Melting temperature of tungsten from two ab initio approaches

نویسندگان

  • L. G. Wang
  • A. van de Walle
  • D. Alfè
چکیده

We have calculated the melting temperature of tungsten by two ab initio approaches. The first approach can be divided into two steps. In the first step, we simulate a large coexisting solid and liquid system by the classical embedded-atom method potential and obtain an approximate melting temperature. In the second step, we compute the accurate melting temperature by performing the ab initio free-energy corrections. The second approach is to perform a direct ab initio molecular-dynamics simulation for the coexisting solid and liquid system using the constant particle number, pressure, and enthalpy ensemble. In the second approach, the simulation is carried out entirely using a density-functional theory Hamiltonian, and no other approximations are imposed. However, the simulation is performed using a relatively small supercell. The results obtained from two ab initio approaches can provide a check for each other. Our results show that they are in good agreement with each other and also in reasonably good agreement with the experimental value.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ab-Initio Study of Optical and Magnetic Properties of Tungsten Disulfide

In this research, the optical properties of tungsten disulfide including dielectric function, the static refractive index, the imaginary part of the dielectric function, optical band gap, energy loss spectrum and its magnetic properties have been studied. Calculations have been done by using Quantum Espresso package which is based on density functional theory and pseudo-potential technique. The...

متن کامل

Complementary approaches to the ab initio calculation of melting properties

Several research groups have recently reported ab initio calculations of the melting properties of metals based on density functional theory, but there have been unexpectedly large disagreements between results obtained by different approaches. We analyze the relations between the two main approaches, based on calculation of the free energies of solid and liquid and on direct simulation of the ...

متن کامل

Multiscale modeling of femtosecond laser irradiation on copper film with electron thermal conductivity from ab initio calculation

By combining ab initio quantum mechanics calculation and Drude model, electron temperature and lattice temperature dependent electron thermal conductivity is calculated and implemented into a multiscale model of laser material interaction, which couples the classical molecular dynamics and two-temperature model. The results indicated that the electron thermal conductivity obtained from ab initi...

متن کامل

Iron under Earth’s core conditions: Liquid-state thermodynamics and high-pressure melting curve from ab initio calculations

Ab initio techniques based on density functional theory in the projector-augmented-wave implementation are used to calculate the free energy and a range of other thermodynamic properties of liquid iron at high pressures and temperatures relevant to the Earth’s core. The ab initio free energy is obtained by using thermodynamic integration to calculate the change of free energy on going from a si...

متن کامل

Adsorption of Carbon Monoxide on a (6, 6) Armchair Carbon Nanotube: Ab initio Study

Perhaps the more interesting nanostructures with large application potential, from transistors to probes, are carbon nanotubes. One of the most widely uses of these nanostructures are their applications as gas detector, which is an important application in the field se of environmental technologies. The present work studies the adsorption of carbon monoxide on a (6, 6) armchair carbon nanotube ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011